2931. 糖果街进阶版
摘要
Title: 2931. 糖果街进阶版
Tag: 树状数组、dp
Memory Limit: 64 MB
Time Limit: 1000 ms
Powered by:NEFU AB-IN
2931. 糖果街进阶版
-
题意
略
-
思路
dp求最大值,dp[i]表示,在1~i中,且吃了i的糖果数量
那么 dp[i] = max(dp[1], dp[2], … , dp[i - k - 1]) + a[i]
max操作可以用树状数组求前缀最大值优化 -
代码
python 代码超时
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
using namespace std;
typedef pair<int, int> PII;
const int N = 5e5 + 10, INF = 0x3f3f3f3f;
int a[N], tree[N], n, k, dp[N];
void add(int x, int d)
{
while(x <= n){
tree[x] = max(tree[x], d);
x += lowbit(x);
}
}
int query(int x)
{
int sum = 0;
while(x > 0){
sum = max(sum, tree[x]);
x -= lowbit(x);
}
return sum;
}
signed main()
{
IOS;
cin >> n >> k;
for(int i = 1; i <= n; ++ i) cin >> a[i];
int ans = 0;
for(int i = 1; i <= n; ++ i){
if(i - k > 1){
dp[i] = query(i - k - 1) + a[i];
}
else dp[i] = a[i];
add(i, dp[i]);
ans = max(ans, dp[i]);
}
cout << ans;
return 0;
}