2222. 迷宫

摘要
Title: 2222. 迷宫
Tag: BFS、最短路、坐标
Memory Limit: 64 MB
Time Limit: 1000 ms

Powered by:NEFU AB-IN

Link

2222. 迷宫

  • 题意

    摘要:终点为n,n,存在传送门,代价与走动代价相同,均为1,起点不定,求从初始格子走到终点的最短 步数的期望值是多少

  • 思路

    两种写法,但都以BFS为基础

    • 总体思路:要求求出所有点到终点的距离之和,所以我们反向思考,使用BFS以终点为起点跑遍整个地图,每次到一个新的位置时,此时到达的步数就是从终点到该点的最短步数,反过来也是从该点到终点的最短步数。为什么一定会是最短呢?因为BFS自带最短路效应。至于传送门采用二维坐标压缩至一维坐标,把坐标基准更改为[0, 0],方便取余和整除
    • 第一种:采用最短路策略,不用st数组,因为每个坐标可能走多次(当然在第一种思路中已经用st数组回避这个可能了),所以每次就得计算最短花费,dist初始化均为INF
    • 第二种:以总体思路为标准,直接BFS,用到dist和st数组,其中dist数组其实可以省略(因其记录的是BFS层数,所以可以边遍历边加)
  • 代码

    第一种

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    # import
    from sys import setrecursionlimit, stdin, stdout, exit
    from collections import Counter, deque
    from heapq import heapify, heappop, heappush, nlargest, nsmallest
    from bisect import bisect_left, bisect_right
    from datetime import datetime, timedelta
    from string import ascii_lowercase, ascii_uppercase
    from math import log, gcd, sqrt, fabs, ceil, floor


    class sa:
    def __init__(self, x, y):
    self.x = x
    self.y = y

    def __lt__(self, a):
    return self.x < a.x


    # Final
    N = int(2e3 + 10)
    M = int(5e6 + 10)
    INF = int(2e9)

    # Define
    setrecursionlimit(INF)
    input = lambda: stdin.readline().rstrip("\r\n") # Remove when Mutiple data
    read = lambda: map(int, input().split())
    LTN = lambda x: ord(x.upper()) - 65 # A -> 0
    NTL = lambda x: ascii_uppercase[x] # 0 -> A

    # —————————————————————Division line ——————————————————————

    dx = [1, 0, -1, 0]
    dy = [0, -1, 0, 1]

    g = [[] for _ in range(M)]
    dist = [[INF] * N for _ in range(N)]


    def pos_to_num(x, y):
    x -= 1
    y -= 1
    return x * n + y


    def num_to_pos(num):
    return [num // n + 1, num % n + 1]


    n, m = read()
    for i in range(m):
    x1, y1, x2, y2 = read()
    g[pos_to_num(x1, y1)].append(pos_to_num(x2, y2))
    g[pos_to_num(x2, y2)].append(pos_to_num(x1, y1))


    def bfs(sx, sy):
    q = deque()
    q.appendleft(sa(sx, sy))
    dist[sx][sy] = 0
    while len(q):
    t = q.pop()
    x, y = t.x, t.y
    for i in range(4):
    x1 = x + dx[i]
    y1 = y + dy[i]
    if x1 < 1 or x1 > n or y1 < 1 or y1 > n:
    continue
    if dist[x1][y1] > dist[x][y] + 1:
    dist[x1][y1] = dist[x][y] + 1
    q.appendleft(sa(x1, y1))

    for num in g[pos_to_num(x, y)]:
    x1, y1 = num_to_pos(num)
    if dist[x1][y1] > dist[x][y] + 1:
    dist[x1][y1] = dist[x][y] + 1
    q.appendleft(sa(x1, y1))


    ans = 0

    bfs(n, n)

    for i in range(1, n + 1):
    for j in range(1, n + 1):
    ans += dist[i][j]

    print(f'{ans / (n * n):.2f}')

    第二种

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    '''
    Author: NEFU AB-IN
    Date: 2023-05-25 15:59:24
    FilePath: \LanQiao\2222\2222.1.py
    LastEditTime: 2023-05-25 16:35:58
    '''
    # import
    from sys import setrecursionlimit, stdin, stdout, exit
    from collections import Counter, deque
    from heapq import heapify, heappop, heappush, nlargest, nsmallest
    from bisect import bisect_left, bisect_right
    from datetime import datetime, timedelta
    from string import ascii_lowercase, ascii_uppercase
    from math import log, gcd, sqrt, fabs, ceil, floor


    class sa:
    def __init__(self, x, y, w):
    self.x = x
    self.y = y
    self.w = w


    # Final
    N = int(2e3 + 10)
    M = int(5e6 + 10)
    INF = int(2e9)

    # Define
    setrecursionlimit(INF)
    input = lambda: stdin.readline().rstrip("\r\n") # Remove when Mutiple data
    read = lambda: map(int, input().split())
    LTN = lambda x: ord(x.upper()) - 65 # A -> 0
    NTL = lambda x: ascii_uppercase[x] # 0 -> A

    # —————————————————————Division line ——————————————————————

    dx = [0, -1, 0, 1]
    dy = [-1, 0, 1, 0]

    g = [[] for _ in range(M)]
    dist = [[0] * N for _ in range(N)]
    st = [[0] * N for _ in range(N)]


    def pos_to_num(x, y):
    x -= 1
    y -= 1
    return x * n + y


    def num_to_pos(num):
    return [num // n + 1, num % n + 1]


    n, m = read()
    for i in range(m):
    x1, y1, x2, y2 = read()
    g[pos_to_num(x1, y1)].append(pos_to_num(x2, y2))
    g[pos_to_num(x2, y2)].append(pos_to_num(x1, y1))


    def bfs(sx, sy):
    q = deque()
    q.appendleft(sa(sx, sy, 0))
    st[sx][sy] = 1
    while len(q):
    t = q.pop()
    x, y, w = t.x, t.y, t.w
    for i in range(4):
    x1 = x + dx[i]
    y1 = y + dy[i]
    if x1 < 1 or x1 > n or y1 < 1 or y1 > n or st[x1][y1]:
    continue
    st[x1][y1] = 1
    q.appendleft(sa(x1, y1, w + 1))
    dist[x1][y1] = w + 1

    for num in g[pos_to_num(x, y)]:
    x1, y1 = num_to_pos(num)
    if st[x1][y1]:
    continue
    st[x1][y1] = 1
    q.appendleft(sa(x1, y1, w + 1))
    dist[x1][y1] = w + 1


    ans = 0

    bfs(n, n)

    for i in range(1, n + 1):
    for j in range(1, n + 1):
    ans += dist[i][j]

    print(f'{ans / (n * n):.2f}')
使用搜索:谷歌必应百度