1125. 牛的旅行
摘要
Title: 1125. 牛的旅行
Tag: floyd
Memory Limit: 64 MB
Time Limit: 1000 ms
Powered by:NEFU AB-IN
1125. 牛的旅行
-
题意
题目的问题:给定两个联通块,在两个连通块中各取任意一点进行连接合成一个连通块,求合并后的联通块的最长路径的最小值
-
思路
设 表示从i出发能到达的最长距离,设要连的边是(i, j)
- 当 i,j 在同一连通块,答案就是
- 当 i,j 在同一连通块,答案就是
用floyd算出任意两点的最短距离即可
-
代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64'''
Author: NEFU AB-IN
Date: 2023-03-19 15:48:41
FilePath: \Acwing\1125\1125.py
LastEditTime: 2023-03-19 16:27:41
'''
read = lambda: map(int, input().split())
from collections import Counter, deque
from heapq import heappop, heappush
from itertools import permutations
from math import sqrt
N = int(160)
INF = int(2e9)
pos = [[] for _ in range(N)]
g = [0]
dist = [[INF] * N for _ in range(N)]
mx = [0] * N
def cale(i, j):
x1, y1 = pos[i]
x2, y2 = pos[j]
return sqrt(abs(x1 - x2)**2 + abs(y1 - y2)**2)
def floyd():
for k in range(1, n + 1):
for i in range(1, n + 1):
for j in range(1, n + 1):
dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])
n = int(input())
for i in range(1, n + 1):
x, y = read()
pos[i] = [x, y]
for i in range(n):
g.append('0' + input())
for i in range(1, n + 1):
for j in range(1, n + 1):
if i == j:
dist[i][j] = 0
if g[i][j] == '1':
dist[i][j] = dist[j][i] = cale(i, j)
floyd()
ans1, ans2 = 0, INF
for i in range(1, n + 1):
for j in range(1, n + 1):
if dist[i][j] != INF:
mx[i] = max(mx[i], dist[i][j])
ans1 = max(ans1, mx[i])
for i in range(1, n + 1):
for j in range(1, n + 1):
if dist[i][j] == INF:
ans2 = min(ans2, mx[i] + cale(i, j) + mx[j])
print(f"{max(ans1, ans2):.6f}")