139. 回文子串的最大长度
摘要
Title: 139. 回文子串的最大长度
Tag: 回文串、字符串哈希、拉长字符串
Memory Limit: 64 MB
Time Limit: 1000 ms
Powered by:NEFU AB-IN
139. 回文子串的最大长度
-
题意
如果一个字符串正着读和倒着读是一样的,则称它是回文的。
给定一个长度为 N 的字符串 S,求他的最长回文子串的长度是多少。 -
思路
思路:枚举每个中心点,二分半径,左右字符串进行哈希比对
实现:- 为了使回文字符串的奇偶长度统一,在两个字符之间加入未出现过的字符——"#"作为分割,使得回文串统一为奇数串
- 先拉长字符串
s[i] = s[i // 2]
- 再插入#
s[i - 1] = '#'
- 先拉长字符串
- 正反哈希前缀
- 当中心点为,半径为
- 左边串的l,r分别为,
- 右边串由于是倒序,即对应,则对应,且l,r应该反过来
- 所以l,r分别为,
- 由于字符串拉长了,所以要求去除未出现字符的回文串长度
- 当字母作为左右端点时,字母比#多一个,所以长度为向上取整,即
- 当#作为左右端点时,#比字母多一个,所以长度为向下取整,即
- 为了使回文字符串的奇偶长度统一,在两个字符之间加入未出现过的字符——"#"作为分割,使得回文串统一为奇数串
-
代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56'''
Author: NEFU AB-IN
Date: 2022-02-28 15:59:28
FilePath: \ACM\Acwing\139.py
LastEditTime: 2022-02-28 17:10:42
'''
P, MOD = 131, 1 << 64
N = int(2e6 + 100)
hl, hr, p = [0] * N, [0] * N, [0] * N
p[0] = 1
def get(h, l, r):
return (h[r] - h[l - 1] * p[r - l + 1] % MOD) % MOD
cnt = 0
while True:
try:
cnt += 1
s = input()
if s == "END":
break
s = list(" " + s)
n = len(s) - 1
s = [*s * 2]
for i in range(2 * n, 0, -2):
s[i] = s[i // 2]
s[i - 1] = '#'
n *= 2
j = n
for i in range(1, n + 1):
hl[i] = (hl[i - 1] * P % MOD + ord(s[i])) % MOD
hr[i] = (hr[i - 1] * P % MOD + ord(s[j])) % MOD #反向哈希
p[i] = p[i - 1] * P % MOD
j -= 1
res = 0
for i in range(1, n + 1):
l, r = 0, min(i - 1, n - i)
while l < r:
mid = l + r + 1 >> 1
if get(hl, i - mid, i - 1) == get(hr, n - (i + mid) + 1,
n - (i + 1) + 1):
l = mid
else:
r = mid - 1
if s[i - r] == '#':
res = max(res, r)
else:
res = max(res, r + 1)
print(f"Case {cnt}: {res}")
except:
break
还有一版一开始写的,思路是,枚举左端点,二分半径,分奇偶两种情况二分
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70P, MOD = 131, 1 << 64
N = int(1e6 + 100)
hl, hr, p = [0] * N, [0] * N, [0] * N
p[0] = 1
def getL(l, r):
return (hl[r] - hl[l - 1] * p[r - l + 1] % MOD) % MOD
def getR(l, r):
return (hr[l] - hr[r + 1] * p[r - l + 1] % MOD) % MOD
def check(x):
for i in range(1, len(s)):
if x % 2 == 0:
L1, R1, L2, R2 = i, i + x // 2 - 1, i + x // 2, i + x - 1
else:
L1, R1, L2, R2 = i, i + x // 2, i + x // 2, i + x - 1
if i + x - 1 >= len(s):
break
if getL(L1, R1) == getR(L2, R2):
return True
return False
def findJI():
l, r = 0, len(ji) - 1
while l < r:
mid = l + r + 1 >> 1
if check(ji[mid]):
l = mid
else:
r = mid - 1
return ji[r]
def findOU():
l, r = 0, len(ou) - 1
while l < r:
mid = l + r + 1 >> 1
if check(ou[mid]):
l = mid
else:
r = mid - 1
return ou[r]
cnt = 0
while True:
try:
cnt += 1
s = input()
if s == "END":
break
s = " " + s
for i in range(1, len(s)):
hl[i] = (hl[i - 1] * P % MOD + ord(s[i])) % MOD
p[i] = p[i - 1] * P % MOD
for i in range(len(s) - 1, 0, -1):
hr[i] = (hr[i + 1] * P % MOD + ord(s[i])) % MOD
ji, ou = [], []
for i in range(1, len(s)):
if i & 1:
ji.append(i)
else:
ou.append(i)
res = max(findJI(), findOU())
print(f"Case {cnt}: {res}")
except:
break